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1.0 Introduction
All measurements are subject to uncertainty, whether from the instrumen-
tation being used to make the measurement, the item being measured, the 
engineer conducting the measurement, or the measurement environment. 
Perhaps one of the largest contributors to the total uncertainty for RF and 
microwave power measurements is mismatch uncertainty. It arises from 
an incomplete knowledge of the phase of the reflection coefficients of the 
source and load impedances, plus their interconnection. Because the mis-
match term almost always predominates, it requires extra attention from 
the engineer who can use simple procedures to minimize its effect.

Instrumentation (e.g., a spectrum/signal analyzer or power meter) also 
contributes significantly to measurement uncertainty. The magnitude of 
this uncertainty and the factors responsible for it depend on the instru-
ment in question. In a signal analyzer, for example, sources of uncertainty 
include frequency response, input attenuator setting, resolution bandwidth 
switching, and the calibrator.

Regardless of where the measurement uncertainty stems from, the end 
result is an impact on measurement accuracy and certainty; the higher the 
uncertainty, the lower the engineer’s confidence in a given measurement. 
The goal, therefore, is to be able to quickly and accurately calculate mea-
surement uncertainty, and minimize it where ever possible.

This application note presents a number of techniques that can be used to 
minimize mismatch uncertainty. It also presents techniques for combining 
measurement uncertainties, and in particular, models that can be used 
to determine mismatch uncertainty when phase is not known. One such 
model, the Rayleigh model, leads to substantially more accurate, yet still 
conservative, estimates of standard uncertainty due to mismatch, as 
compared to the methods commonly used. In fact, the Rayleigh-based 
process typically results in a six times lower estimate of uncertainty than 
the popular U-shaped distribution method. 
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2.0 Measurement Challenge: Estimating 
Measurement Uncertainty
Estimating and minimizing measurement uncertainly can be a daunting task, 
one that’s critical for allowing engineers to apply a smaller guardband. By 
definition, a guardband is the difference between the acceptance test limit and 
performance limit (specification). It accounts for measurement uncertainties, 
as well as changes in performance due to external conditions, drift and any 
other mechanism that may affect performance. The application of a guardband 
ensures, with a high level of confidence, that a product measured and found to 
be within the test limit will meet specification.

To apply a smaller guardband and, in turn, increase measurement confidence 
and yield, measurement uncertainty must be accurately estimated. While various 
techniques can be used to accomplish this task (e.g., more averaging or lower 
IF resolution bandwidth), such methods often come with undesirable conse-
quences like longer measurement time. Today’s engineers require a simpler, 
quicker way of estimating measurement uncertainty, and in particular, mismatch 
uncertainty—one that is conservative enough to enable the use of a smaller 
guardband. 

3.0 Addressing Mismatch Uncertainty
A number of simple and advanced techniques can now be employed to minimize 
mismatch uncertainty. To better understand these techniques first consider that 
mismatch uncertainty, or mismatch loss uncertainty, is defined as the amount 
of power (expressed in dB) unavailable on the output of a transmission line due 
to signal reflections and impedance mismatches. If properly terminated, the 
transmission line has no reflections and therefore, no mismatch loss. 

Here, Γl is the reflection coefficient and is frequently expressed in terms of its 
magnitude, ρl, and phase, φl. Γg is the reflection coefficient looking back into 
a generator attached to a power meter (sensor) and is express in terms of its 
magnitude, ρg, and phase, φg. Γl and Γg are seldom completely known for both 
magnitude and phase. Only the magnitudes ρl and ρg are usually measured or 
specified. This lack of phase information makes it is impossible to exactly cal-
culate the net power delivered by the generator to a load Pgl and the ratio of the 
maximum available power, Pav to Pgl. Minimum and maximum values, however, 
can be found.
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The maximum and minimum values of 10 log|1 – ΓgΓl|2 are called mismatch loss 
uncertainty limits (Mu). The maximum occurs when ΓgΓl combines with “one” in 
phase to yield:

 	 Mu max = 10 log (1 + ρgρℓ)2	 Equation 1

This maximum limit is always a positive number and cannot be larger than 6 
dB, which occurs when ρl = ρg = 1. The minimum value of the mismatch loss 
uncertainty occurs when ΓgΓl combines with “one” exactly out of phase to yield:

  	 Mu min = 10 log (1 – ρgρℓ)2	 Equation 2

The minimum limit is always a negative number. Its magnitude is greater than 
the magnitude of the maximum limit, but usually by a very small amount.

Note that mismatch loss uncertainty limits can also be specified as a percent 
deviation from “one” rather than in dB. This is given by: 

  	 %Mu = 100 [(1 ± ρgρℓ)2 – 1]	 Equation 3

For mismatches less than 2 percent, the following approximation can be used:

  	 Mu > ± 200 ρgρℓ %	 Equation 4

Modern engineering electronic calculators have programs available for calculat-
ing mismatch loss uncertainty limits, either in terms of standing wave ratio 
(SWR) or ρ. Computer-aided engineering models often contain routines for such 
transmission line calculations.
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3.1 Simple techniques for reducing mismatch uncertainty
A number of practical techniques can be employed to control mismatch  
uncertainty. The first involves selecting test equipment with the lowest SWR 
specification. In this case, controlling mismatch uncertainty is as simple as 
reducing the reflection coefficient on any transmission lines or components  
that are part of the test arrangement. Other steps that can be taken to ensure 
test system performance does not become degraded include:

•	 Minimize cable length and number of adapters. At lower frequencies (e.g., 
lower than 300 MHz) the length of the transmission lines should be minimized 
to reduce the changes of phase with frequency. For higher frequencies this 
method is not viable, because even short lengths of cable form significant 
fractions of a wavelength. Good quality cable should also be used. If testing 
multiple devices, the connectors should be designed for hundreds of connec-
tion/disconnection cycles. 

	 Additionally, using adapters to convert between different families of connec-
tors may be unavoidable, but should be minimized. Adapters should convert 
directly and not be stacked. Also, be wary of mating between dissimilar con-
nectors. For example, APC-3.5 and SMA look very similar but have different 
mechanical interfaces. The use of a precision adapter or “connection saver” 
is recommended between APC3.5 and SMA connectors.

•	 Use a torque wrench for consistency and apply appropriate torque values. 
When tightening screw-type connectors, use a torque wrench to avoid over- 
or under-tightening the connector. This will ensure there is little variation in 
tightness when another operator takes over.

•	 Characterize cables, connectors, and adapters. The best way to check the 
performance of cables and adapters is to use a vector network analyzer and 
record the results for comparison at the next regular test station audit. The 
best way to ensure the performance of precision connectors is to clean and 
gauge them regularly. When a connector is gauged, it is measured with a spe-
cial dial gauge to ensure it has not been mechanically damaged. A damaged 
connector can instantly ruin the mated part. 



6

3.2 Advanced techniques for improving mismatch uncertainty 
When the performance of a test arrangement is simply not good enough for 
the job, a number of more advanced techniques can be employed to improve 
mismatch uncertainty and in turn, accuracy. These techniques include:

•	 Add an attenuator to one end of the transmission line to improve the test 
SWR. The use of an attenuator (pad) to improve the flatness of a transmis-
sion line assumes that the return loss of the attenuator is better than the 
original source or load. The attenuator is usually placed at the end of the line 
with the worst return loss. To keep the signal level constant at the load, the 
generator level must be increased, although doing so limits the applicability of 
this method to the mid-range of power levels.

•	 Use an isolator component to reduce reflections from a load. Isolators are 
applied at high power levels, where the economic cost of the power lost in 
an attenuator would be high, and at very low power levels, where the signal 
would be masked by thermal noise. Isolator components are narrowband 
devices and are likely to be more expensive than attenuators.

•	 Use the power-splitter method. Here, a leveling loop is employed to create 
a Zo impedance at the centerpoint of the splitter. The resulting “generator 
output impedance” is equivalent to the highly-matched microwave resistor in 
the second arm of the splitter. The leveling loop uses low-frequency feedback 
to improve the effective source match to the line. This requires a two-resistor 
power splitter or a directional coupler. The output of the generator is mea-
sured on a power meter and the generator is adjusted so that the indicated 
power is at the level needed. The technique requires a power meter that is 
better matched than the signal generator, and an accurately matched two-
resistor power-splitter or directional coupler.

As the measurement frequency increases, so too does the importance of  
maintaining a low SWR on the transmission line. While mismatch uncertainty 
can never be completely eliminated, these practical measures will allow the 
engineer to keep SWRs to a minimum.
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4.0 Instrument Uncertainties 
Instrument uncertainty is another contributing factor in overall measurement 
uncertainty. Two instruments that are often used in RF and microwave power 
measurements are the signal analyzer and the power meter. Each has its own 
unique sources of uncertainty.

4.1 Signal analyzer
Figure 1 shows a simplified block diagram of the elements in a typical signal 
analyzer, some of which contribute uncertainty to amplitude measurements. 
These contributions or amplitude uncertainty factors are specified for most 
signal analyzers and listed in Table 1. The range of values for each factor covers 
a variety of signal analyzers. Most signal analyzers have specifications for both 
absolute and relative uncertainties. 

Figure 1. Shown here are elements of a 
typical superheterodyne signal analyzer. 
As shown in the block diagram, the func-
tions accomplished in the DSP include 
log amplification, RBW filtering, envelope 
detection, video filtering, averaging and 
display scaling.
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Table 1. Amplitude uncertainty factors

Relative ± dB

Frequency response (flatness) 0.5 to 4

Band switching 0.5 to 1

Scale fidelity 0.5 to 2

Reference level (IF gain) 0.1 to 1

input attenuator switching 0.5 to 2

Resolution bandwidth switching 0.1 to 1

Display scale switching 0.0 to 1

Absolute ± dB

Frequency response 0.5 to 4

Calibrator 0.2 to 1

Relative uncertainties affect both relative and absolute measurement accuracy. 
Some of the factors affecting relative measurement uncertainty are:

•	 Frequency Response (Flatness)—Signal analyzer frequency response is often 
the single highest contributor to uncertainty and is a function of input attenu-
ator flatness, mixer conversion loss and preselector flatness (if applicable). 
It is frequency-range dependent, specified as ±n dB over a frequency range 
at a given attenuator setting, the frequency response affects the displayed 
amplitudes of signals at different frequencies. It is also usually specified for 
both relative and absolute measurements. 

	 Relative frequency response uncertainty describes the largest possible 
amplitude uncertainty over a given frequency range relative to the midpoint 
between the amplitude response extremes within that frequency range. The 
relative frequency response specification for a given frequency range tends to 
be lower than the absolute frequency response specification over the same 
range. To obtain the frequency response uncertainty for relative amplitude 
measurements within a band, the relative frequency response specification 
must be doubled to reflect the peak-to-peak frequency response (often 
greater than the absolute frequency response spec.). Some signal analyzers 
require engineers to “peak” the preselector for frequency response specifica-
tions to be valid.

	 A low-frequency RF analyzer might have a relative frequency response  
uncertainty of ±0.5 dB. A microwave signal analyzer tuning in the 20 GHz 
range could well have an uncertainty in excess of ±4 dB. 

•	 Band Switching—Mixing the input signal with harmonics of the local oscil-
lator (LO) allows measurements over a very wide frequency range. Each LO 
harmonic provides a different harmonic frequency band within the analyzer’s 
overall frequency range. When signals in different harmonic bands are mea-
sured, additional uncertainties arise as the analyzer switches from one band 
to another. On some signal analyzers, the band-switching points are visible as 
discontinuities in the displayed noise floor. The engineer can verify whether 
or not their measurement involves more than one band by referring to the 
analyzer’s specifications for the frequency ranges related to each harmonic 
band. Although not always specified, a typical band switching uncertainty  
is ±1 dB.
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•	 Input Attenuator Switching—Input attenuation has inherent uncertainty 
that reduces reference level accuracy, but only when the attenuator setting 
changes between reference level calibration and measurement. Because the 
input attenuator operates over the entire frequency range of the analyzer, its 
step accuracy is a function of frequency. At low frequencies, the attenuator 
is quite good. At 20 GHz, it’s not as good. A typical input attenuator switching 
uncertainty is ±1 dB.

•	 Resolution Bandwidth Switching—Different resolution bandwidth (RBW) set-
tings have different insertion loss characteristics which can cause amplitude 
changes when the same signal is measured with different settings. Changing 
the bandwidth setting between amplitude measurements degrades accuracy. 
A typical RBW switching uncertainty is ±0.4 dB.

Absolute measurements are made relative to a calibration signal with known 
amplitude. Most signal analyzers have a built-in calibrator that provides a signal 
with specified amplitude at one frequency. A typical calibrator has an uncer-
tainty of ±0.3 dB. The calibrator provides absolute calibration for the top line of 
the graticule. Since the calibrator source typically operates at a single frequency, 
the relative accuracy of the analyzer is used to translate the absolute calibration 
to other frequencies and amplitudes.

If the signal being measured is at a different frequency than the calibrator, the 
frequency control must be changed. If the signal is at different amplitude, the 
reference level should also be changed to bring the signal to the top graticule 
line for best accuracy (if IF gain uncertainty is less than scale uncertainty).  
Such changes contribute relative amplitude uncertainty to the measurement.

4.2 Power meter  
Power meters (including sensors) are often used when measuring RF and micro-
wave power. Some of the factors affecting measurement uncertainty in power 
meters include:

•	 Power Meter Calibration—A number of standards and processes are involved 
in calibration of a power meter. Each can be influenced by various factors 
like personnel carrying out the calibration or environmental factors such as 
temperature and humidity that contribute to measurement uncertainty. 

•	 Power Meter—Instrumentation uncertainty is the result of a combination of 
factors such as meter tracking errors, circuit nonlinearities, range-changing 
attenuator inaccuracy, and amplifier gain errors. It also includes very small 
sources of uncertainty arising from things like the thermoelectric voltage 
introduced by temperature gradients within the electronic circuits and inter-
connecting cables or the operator’s interpretation of the meter indication. 
This accumulated uncertainty is guaranteed by the instrument manufacturer 
to be within a certain limit. 
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•	 Power Meter Drift—Drift, or long-term stability, is the change in meter 
indication over a long time (usually one hour) for a constant input power, tem-
perature and line voltage, and is mostly sensor induced. In most cases, drift 
is actually a drift in the zero setting. For measurements on the upper ranges, 
drift contributes a very small amount to total uncertainty. On the more sensi-
tive ranges, it can be reduced to a negligible level by zero setting immediately 
prior to making a reading.

•	 Sensor Calibration Factor—The calibration factor (Kb) is a combination of the 
power sensor’s effective efficiency and mismatch loss. Accurate measure-
ment of Kb is quite involved and performed mainly by standards laboratories 
and manufacturers. Most modern power meters can correct their meter read-
ing by setting a dial or keying in a digital number to the proper Kb value. The 
uncertainty of Kb (stemming from inaccuracies in measurement of Kb by  
the manufacturer, NIST or standards laboratories) is specified by the  
calibration supplier.

•	 Power Sensor Linearity—Power measurement linearity is mostly a charac-
teristic of the sensor. Deviation from perfect linearity usually occurs in the 
sensor’s higher power range or near the sensor’s specified limits. For thermo-
couple sensors, linearity is negligible except for the top power range of +10 to 
+20 dBm, where the deviation is specified at ±3 percent.

•	 Power Meter Zero Set—In any power measurement, the meter must initially 
be set to zero with no RF power applied to the sensor. This is accomplished 
within the power meter by introducing an offset voltage that forces the meter 
to read zero. The offset voltage is contaminated by several sources including 
sensor and circuit noise. On higher power ranges, error in zero setting is 
small in comparison to the signal being measured.

•	 Power Meter and Sensor Noise—Noise (short-term stability), arises from 
sources within the power sensor and circuitry and is specified as the change 
in meter indication over a short time interval (usually one minute) for a 
constant input power, temperature and line voltage. One cause is the random 
motion of free electrons due to the finite temperature of the components. The 
power observation might be made at a time when this random fluctuation 
produces a maximum indication, or perhaps a minimum.
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5.0 Combining Measurement Uncertainties
While various individual uncertainties from the signal analyzer and power meter 
have been discussed, at some point total uncertainty must be calculated. This 
can be accomplished using traditional analysis methods like worst-case or Root 
Sum of Squares (RSS), or using a Rayleigh distribution model, which provides a 
more accurate, but still conservative estimate of uncertainty due to mismatch.

Figure 2. Desired power output to be measured is Pgzo, but measurement results in the reading Pm.

To better understand these different methods first consider the image in Figure 2, 
which is used to develop an equation showing how a power meter reading, Pm, 
is related to the power a generator would deliver to a Zo load, Pgzo. The equation 
shows how the individual uncertainties contribute to the difference between Pm 
and Pgzo. The power measurement equation is given by:

 	 Pgzo =  Mu(Pm–t)
	 Equation 5

	                   Kbm

where Pgzo is the net power delivered to the sensor, Mu is the mismatch uncer-
tainty term, t is the total offset uncertainty, Kb is the calibration factors, and m is 
the magnification.

In the ideal measurement situation, Mu and Kbm are each one, and t is zero. 
Under ideal conditions, meter reading Pm gives the proper value of Pgzo.

Signal generator under test

Signal generator under test Power sensor

EPM power meter

ρgℓ

ρgℓ

ρgZo ρgZo

ρm

 = Power delivered to Zo load 

 = Net power delivered to sensor 
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5.1 Worst-case uncertainty
One method of combining uncertainties for power measurements in a worst-case 
manner is to add them linearly. This occurs when all possible sources of error are 
at their extreme values and in such a direction as to add together constructively, 
achieving the maximum possible deviation between Pm and Pgzo. 

As an example, consider the measurement conditions listed at the top of Table 2, 
which is a chart of the various error terms for the power measurement of Figure 2. 
The conditions and uncertainties listed in the Table are typical and the calculations 
are for illustration only as they do not indicate what’s possible using the most 
accurate technique. Calculations are carried out to four decimal places because of 
calculation difficulties with several numbers of almost the same size.

Table 2. Chart of uncertainties for a typical absolute power measurement. Most errors listed are from a manufacturer’s data sheet.

Measurement condition Pm = 50 µW Full scale (F.S.) = 100 µW
ρℓ ≤ 0.091 (SWR ≤ 1.2) ρg ≤ 0.2 (SWRg ≤ 1.5)

 Kb = 93% ± 3% (worst case), ±1.5% (RSS)

	 Error Description Worst case values RSS component 

PgZo max PgZo min (∆X/X)2

	 Mu (1 ± PgPℓ)2  1.0367 0.9639 (0.0367)2

	 Kb uncertainty ±3% (w.c.), ±1.5% (RSS) 1.03 0.97 (0.015)2 

	 Components of m  

 		  Ref. osc. unc. ±0.6% (use 2-yr 25 ±10 °C value) 1.006 0.994 (0.006)2

  		  Ref. osc. Mu SWRg = 1.05, SWR, = 1.1 1.002 0.998 (0.002)2

		  Instrumentation ±0.5% of F.S. 1.01 0.99 (0.01)2

	 Total m 1.018 0.982

	 Components of t

		  Zero set ±0.5% F.S. (low range) +0.05 µW –0.05 µW (0.001)2

		  Zero carryover ±0.2% of F.S +0.2 µW –0.2 µW (0.004)2

 		  Noise ±0.025 µW +0.025 µW –0.025 µW (0.0005)2

	 Total t +0.275 µW –0.275 µW

	 Expressions of total uncertainty

 		  Pgzo max 54.7170 µW

		  Pgzo min 45.7111 µW

		  ∆Pgzo 4.7170 µW –4.2889 µW

		  ∆Pgzo /Pm +9.43% –8.58% (0.001729)1/2 

   ±4.2%

 +0.1769 dB

   	 Uncertainty in dB 0.3915 dB –0.3895 dB –0.1844 dB

 	 Pgzo max=  Mu max(Pm–tmin)
	                         Kb min mmin

 	 Pgzo min=  Mu min(Pm–tmax)
	                         Kb max mmax
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Instrumentation uncertainty, i, is frequently specified in percent of full scale (Pfs). 
The contribution to magnification uncertainty, m, is:

 	 mi =
  (1 + i) Pfs	 Equation 6

		             Pm

The uncertainties that contribute to the total magnification uncertainty combine 
like the gain of amplifiers in cascade. The minimum possible value of m occurs 
when each of its contributors is a minimum. The minimum value of m (0.9762) 
is the product of the individual factors (0.988 * 0.998 * 0.99). The factors that 
contribute to the total offset uncertainty, t, combine like voltage generators  
in series; that is, they add. Once t is found, the contribution in dB can be  
calculated using:

 	 tdB = 10 log (1 ±    t   )	 Equation 7
				                  Pm	
The maximum and minimum values of Pgzo can be calculated using Equation 5, 
given the values of Table 2. In this case, Pgzo max is 1.0943 Pm and Pgzo min is 
0.9142 Pm. Note that the uncertainty in Pgzo may also be stated as an absolute 
differential in power, a fractional deviation, a percent of the meter reading, or 
a dB deviation from the meter reading (which can be found by summing the 
individual error factors expressed in dB).

Figure 3 graphically depicts the contributions to worst-case uncertainty, with 
mismatch uncertainty as the largest single component of total uncertainty. This 
is typical of most power measurements. Magnification and offset uncertainties, 
the easiest to evaluate from specifications and often the only uncertainties 
evaluated, contribute to less than one-third of the total uncertainty.
 

Figure 3. Graph of individual contributions to the total worst-case uncertainty.
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5.2 RSS uncertainty method
Whereas the worst-case uncertainty is a very conservative approach, the RSS 
method offers a more realistic means of combining uncertainties. It is based 
on the fact that most of the power measurement errors, although systematic 
and not random, are independent of each other and therefore, their individual 
uncertainties can be combined in an RSS manner.

Finding the RSS uncertainty requires that each individual uncertainty be 
expressed in fractional form. The RSS uncertainty for the power measurement 
(Equation 5) is given by:

	
∆Pgzo = [(∆Mu)2

 + (∆Kb)2
 + (∆m)2

 + (∆t)2]½

	 Equation 8
	  Pgzo          Mu            Kb           m          Pm

If not known directly, each of these factors may be found by taking the RSS of 
several components using:

	 ∆M1 = [(∆M1)2
 + (∆m2)2

 + •••]½

	 Equation 9
	  m            m1           m2

Here, m1, m2, and so forth are the reference oscillator uncertainty, the instrumen-
tation uncertainty, and other terms of Table 2. The extreme right hand column of 
Table 2 shows the components used to find the total RSS uncertainty. The result 
is ±4.3 percent, which is much less than the worst-case uncertainty of +10.1 
percent and –9.1 percent. One characteristic of the RSS method is that the final 
result is always larger than the largest single component of uncertainty.

5.3 Uncertainty for mismatch model 
When the reflection coefficient is known, both magnitude and phase, it is pos-
sible to correct for mismatch with known uncertainty. When phase is not known, 
determining mismatch uncertainty requires a different model. The standard 
uncertainty of the mismatch expression, u(Mu), assuming no knowledge of the 
phase, depends on the statistical distribution that best represents the moduli of 
reflection coefficients Γg and Γl.

The power dissipated in a load when Γl is not 0 is:

	 Pd = Pgzo    
1 – │Γℓ│

2
	 Equation 10

				      │1 –  ΓgΓℓ│2

In this case, the numerator is known as mismatch loss, while the denominator 
represents mismatch uncertainty, Mu, the gain or loss due to multiple reflections 
between the generator and the load. If both the moduli and phase angles of Γg 
and Γl are known, Mu can be precisely determined. Generally, an estimate of the 
moduli exists, but the phase angles of Γg and Γl are not known.
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Table 3. Summary of test cases used to estimate mismatch uncertainty probability.

Case u(Mu) Distribution Type

A
  1
√2

  x |Γmaxg| x |Γmaxℓ| – Disk/Disk (uniform 
inside circle)

B √2 x |Γg| x |Γℓ| U-shape Ring/Ring (fixed)

C    √2
In(20) x Γ95g x Γ95ℓ Bell-shape Rayleigh/Rayleigh

D |Γmaxg| x |Γℓ| – Disk/Ring

E
     2
√In(20) x Γ951 x Γ2 – Ring/Rayleigh

F Use ISO  GUM equation – –

Figure 4. When the reflection coefficients of the generator and load are not known, probabilities of mismatch uncertainty can be  
estimated using three models: one that uses measured values of reflection coefficient magnitude, another relying on Rayleigh  
distributed values when reflection coefficient magnitude must be assumed, and the third combining measured and assumed values.

Г max Г max Г 95Г

When the reflection coefficients of the generator and load are not known, 
engineers may estimate probabilities of mismatch uncertainty according to the 
six test cases in Table 3.

(a) (b) (c)
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■	 Case A: Two disks distribution of Γ (also known as uniform inside circle)
	 Consider Figure 4(a) where both the generator and load have Γ of known 

maximum specified value of magnitude. For each component, the vector value 
of Γ has equal probability of lying anywhere within the circle bounded by that 
maximum magnitude. This distribution has an absolute phase that is uniform-
ly distributed, as well as the relative phase between the two components. 
The probability distribution function (PDF) of the mismatch uncertainty from 
this combination is illustrated by the histogram in Figure 5. A closed-form 
evaluation of the standard deviation (standard uncertainty) of this distribution 
gives this equation:

 		  u(Mu) =  1  x |Γ maxg| x |Γ maxℓ|	 Equation 11
				       √2

Figure 5. Histogram of Mu for case A, created from a Monte Carlo simulation for  
Γ1 max = 0.1 and Γ2 max = 0.05.
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■	 Case B: Two rings distribution of Γ (also known as fixed)
	 Consider Figure 4(b) where both the generator and load have Γ of known mag-

nitude. Both the generator and load have an absolute phase that is uniformly 
distributed, as well as the relative phase between the two components. The 
PDF of the mismatch uncertainty from this combination is illustrated by the 
histogram in Figure 6, the well-known U-shaped distribution. A closed-form 
evaluation of the standard deviation (standard uncertainty) of this distribution 
gives this equation:

 							    
		  u(Mu) = √2 x |Γg| x |Γℓ|	 Equation 12
 

Figure 6. Histogram of Mu for case B, two rings distribution, created from a Monte Carlo 
simulation for Γ1 = 0.1 and Γ2 = 0.05.
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■	 Case C: Two Rayleigh distribution of |Γ|
	 Consider Figure 4(c) where both Γ have Rayleigh magnitude distributions, with 

a known 95th percentile, Γ95. The PDF of this case is shown in Figure 7. The 
mismatch standard uncertainty is:

 	 u(Mu) =   √2    x Γ95g x Γ95ℓ	 Equation 13
			       In(20)

Note that Γ95 is less than max. If max is actually the magnitude Γ corresponding 
to a 0.27% yield loss in manufacturing (equivalent of “3 sigma” performance 
in a Gaussian-distributed specification), then Γ95 = 0.712 × Γmax. In practice, 
Γmax usually exceeds Γ95 by a greater ratio than this, making this a conservative 
estimation method. Typically, Case C will give lower uncertainties than Case A by 
a factor of three, and lower than Case B by a factor of six or more.

Figure 7. Histogram of Mu for case C, two Rayleigh distribution of magnitude, showing a 
bell shape.
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■	 Case D: One disk and one ring distribution of Γ
	 Here, one of the Γ has a known magnitude and the other has a known 

maximum specified value of magnitude. Both the generator and load have 
an absolute phase that is uniformly distributed, as well as the relative phase 
between the two components. The PDF of the mismatch uncertainty from  
the combination of these two Γ is illustrated by the histogram in Figure 8.  
A closed-form evaluation of the standard deviation (standard uncertainty)  
of this distribution gives:

 		  u(Mu) = |Γmaxg| x |Γℓ|	 Equation 14

Figure 8. Histogram of Mu for case D, one disk and one ring distribution, created from a 
Monte Carlo simulation for Γ1 = 0.1 and Γ2 = 0.05.
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Figure 9. Histogram of Mu for case E, one ring and one Rayleigh distribution, created from 
a Monte Carlo simulation for Γ1 = 0.1 and Γ2 = 0.05.

■	 Case E: One ring distribution of Γ and one Rayleigh distribution of | Γ|
	 Here, one of the Γ has a known magnitude and the other has a known 95th 

percentile value of magnitude. Both the generator and load have an absolute 
phase that is uniformly distributed, as well as the relative phase between the 
two components. The PDF of this mismatch uncertainty is illustrated by the 
histogram in Figure 9. The shape of this histogram varies substantially with 
the ratio of the two Γ values. A closed-form evaluation of the standard  
deviation (standard uncertainty) of this distribution gives:

		  u(Mu) = √   2     x Γ951 x Γ2	 Equation 15
				            In(20)	
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■	 Case F: Known magnitude of Γ, known phase (both generator and load)
	 When both and phase are known for the generator and load, the mismatch 

correction can be applied to the measurement to obtain a more accurate 
result. In this case, the uncertainty of the mismatch term can be determined 
using the ISO model (GUM). Here, mismatch standard uncertainty is given by:

  			   Mu = |1 – ΓgΓℓ|2	 Equation 16

	 and can be calculated, where u(Mu) is the standard uncertainty, as:

						      Equation 17

 			   u(Mu)2 = (u(Γg)|1 – ΓgΓℓ|| – Γℓ|)2 + (u(Γℓ)|1 – ΓgΓℓ|| –  Γg|)2	
		

			   u(Mu) = √(u(Γg)|1 – ΓgΓℓ||Γℓ|)2 + (u(Γℓ)|1 – ΓgΓℓ||Γg|)2

	

	 Here, u(Γ) = ρ standard uncertainty of sensor that can be obtained from the  
measurement report or operating manual.

	 Analyzing mismatch uncertainty is a complex process. Historically, most 
engineers have adopted the U-shape distribution method, which results in 
overreporting of the uncertainty. For engineers looking to minimize the risk 
of underreporting uncertainty, this can be acceptable. However, the Rayleigh 
distribution provides a more suitable solution with more realistic values.

6.0 Summary
Calculating uncertainty is a critical and necessary part of any measurement. 
While instrumentation contributes to total measurement uncertainty, mismatch 
is perhaps the largest contributor. A number of techniques, both simple and 
advanced, can be employed to reduce mismatch uncertainty. Analyzing mis-
match uncertainty, however, is a complex and time consuming process. While 
a number of methods can be used to accomplish this task, use of the Rayleigh 
model provides a quick, accurate estimate of standard uncertainty due to mis-
match; one that provides a roughly six times lower estimate of uncertainty than 
the popular U-shaped distribution method. For today’s engineers the benefit of 
this approach is clear—lower measurement uncertainty means better accuracy 
and greater confidence in a given measurement.
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